RACE

SSC CGL - 180616 GRAND TEST HINTS AND SOLUTIONS

ANSWER KEY

1	(4)	26	(4)	51	(1)	76	(4)
2	(1)	27	(2)	52	(2)	77	(3)
3	(2)	28	(3)	53	(2)	78	(2)
4	(3)	29	(3)	54	(2)	79	(3)
5	(4)	30	(3)	55	(1)	80	(4)
6	(1)	31	(4)	56	(3)	81	(3)
7	(4)	32	(2)	57	(4)	82	(1)
8	(3)	33	(3)	58	(2)	83	(4)
9	(1)	34	(3)	59	(2)	84	(2)
10	(3)	35	(2)	60	(2)	85	(3)
11	(1)	36	(4)	61	(3)	86	(3)
12	(1)	37	(2)	62	(3)	87	(2)
13	(2)	38	(4)	63	(3)	88	(3)
14	(2)	39	(1)	64	(3)	89	(2)
15	(1)	40	(4)	65	(3)	90	(2)
16	(2)	41	(3)	66	(3)	91	(2)
17	(2)	42	(4)	67	(4)	92	(4)
18	(3)	43	(4)	68	(3)	93	(1)
19	(3)	44	(4)	69	(1)	94	(4)
20	(3)	45	(4)	70	(2)	95	(4)
21	(2)	46	(4)	71	(3)	96	(3)
22	(2)	47	(1)	72	(2)	97	(3)
23	(1)	48	(4)	73	(3)	98	(2)
24	(3)	49	(2)	74	(2)	99	(1)
25	(2)	50	(3)	75	(2)	100	(4)

- 1. (4) According to the alphabetical order, M=13 and N=14 So, $M\times N=13\times 14$ In the same way, F=6 and R=18 Hence, $F\times R=6\times 18$
- 2. (1) As,

Similarly,

3. (2) As, $9 \times 5 = 45$ and $9 \times 4 = 36$ Similarly, $9 \times 7 = 63$ and $9 \times 6 = 54$

4. (3) As, MUMBAI \longrightarrow LTLAZH

Similarly,

- 5. (4) A surgeon uses forceps, similarly, a blacksmith uses hammer
- 6. (1) $55 \times 5 = 275$, $15 \times 15 = 225$ $5 \times 45 = 225$, $25 \times 9 = 225$
- 8. (3) Except option (3), rest are the ancient names of India wheares Ajimabad is the ancient name of Patna.
- 9. (1) All other groups of letters except option (1) have (+2) series gap in each of them.
- 10. (3) Whiter, Worked, Worst, Wound, Writer
- 11. (1) The code contains the letters of the word in the order-third, fourth, second, fifth, first and sixth.
- 12. (1) $2 \times 5 = 10, 10 \times 3 = 30, 30 2 = 28$ $4 \times 5 = 20, 20 \times 3 = 60, 60 - 2 = 58$
- 13. (2) Total number of digits = (Number of digits in 1–c
 - = (Number of digits in 1-digit page nos. + Number of digits in 2-digit page nos. + Number of digits in 3-digit page nos.)

$$= (1 \times 9 + 2 \times 90 + 3 \times 267)$$
$$= (9 + 180 + 801) = 990$$

- 14. (2) Clearly, number of boys in the row = (6 + 10 + 8) = 24
- 15. (1) At 1 o'clock, the hour hand is at 1 and the minute hand is at 12. Thus, they are 5 min spaces apart. To be together, the minute hand must gain 5 min over the hour hand. 55 min. are gained by minute hand in 60 min

5 min will be gained by it in $\left(\frac{60}{55} \times 5\right)$

$$min = \frac{60}{11} min = 5\frac{5}{11} min$$

Hence, the hands will coincide at $5\frac{5}{11}$ min past 1.

16. (2)
$$12 \div 2 + 9 - 4 = ?$$

 $6 + 9 - 4 = ?$
 $15 - 4 = ?$
 $\therefore ? = 11$

2 SSC CGL

- 17. (2) BCEGKMQ 2 3 5 7 11 13 17
- 18. (3) 18 100 294 648 1210 $5^3 - 5^2$ 729 -25-81 -12118 100 294 648 1210
- 19. (3) The sequence in first column is multiplied by 5.
 Thus, 1 × 5 = 5, 5 × 5 = 25, 25 × 5 = 125
 The sequence in third column is multiplied by 2.
 Thus, 7 × 2 = 14, 14 × 2 = 28, 28 × 2 = 56
 The sequence in second column is multiplied by 4.
 ∴ Missing number = 12 × 4 = 48
- 20. (3) In the first column, $29 8 = 21 = 7 \times 3$ In the second column, $19 - 7 = 12 = 4 \times 3$ Let the missing number in the third column be x. Then, $31 - 6 = 5 \times x$ or 5x = 25 or x = 5
- 21. (2)
- 22. (2)
- 23. (1) Year Year Week

Days

- 24. (3) 13 + 3 2 + 1 = 15 or 17 2 = 15
- 25. (2) Let son's age be x yr.

 Then, father's age = (3x) yr

 Five years ago, father's age = (3x 5) yr

 and son's age = (x 5) yr

 So, 3x 5 = 4(x 5) $\Rightarrow 3x 5 = 4x 20$ $\Rightarrow x = 15$ yr \therefore Son's age = 15 yrs
- 51. (1) Let the length of the side of the chess board be x cm. Then
 Area of 64 equal squares = $(x - 4)^2$

 $\therefore (x-4)^2 = 64 \times 6.25$ $\Rightarrow x^2 - 8x + 16 = 400$ $\Rightarrow x^2 - 8x - 384 = 0$ $\Rightarrow x^2 - 24x + 16x - 384 = 0$ $\Rightarrow (x-24)(x+16) = 0 \Rightarrow x = 24 \text{ cm}$

Hence option (1) is true.

52. (2) Let the reservoir be filled by first pipe in x hours. Then, second pipe will fill it in (x + 10) hr

$$\therefore \frac{1}{x} + \frac{1}{(x+10)} = \frac{1}{12}$$

$$\Rightarrow \frac{x+10+x}{x(x+10)} = \frac{1}{12}$$

$$\Rightarrow x^2 - 14x - 120 = 0$$

$$\Rightarrow (x-20)(x+6) = 0$$

$$\Rightarrow x = 20 \qquad [neglecting the -ve value of x]$$

So, the second pipe will take (20 + 10) hr i.e., 30 hr to fill the reservoir.

53. (2) Let the highest score be x. Then, lowest score = (x - 150)Then, $(50 \times 40) - [x + (x - 150)] = 38 \times 48$ $\Rightarrow 2x = 2000 + 150 - 1824$ $\Rightarrow 2x = 326$ $\Rightarrow x = 163$

54. (2) Let original income = ₹ 100 Then, expenditure = ₹ 75 and savings = ₹ 25 New income = ₹ 120

New expenditure =
$$\mathcal{E}\left(\frac{110}{100} \times 75\right) = \mathcal{E}\left(\frac{165}{2}\right)$$

New savings =
$$\mathfrak{T}\left(120 - \frac{165}{2}\right) = \mathfrak{T}\frac{75}{2}$$

:. Increase % =
$$\left(\frac{25}{2} \times \frac{1}{25} \times 100\right)$$
% = 50%

55. (1)
$$5 \tan \theta = 4 \Rightarrow \tan \theta = \frac{4}{5} = \frac{\text{Perpendicular}}{\text{Base}}$$

Now,
$$\frac{5\sin\theta - 3\cos\theta}{5\sin\theta + 3\cos\theta} = \frac{5\tan\theta - 3}{5\tan\theta + 3}$$

$$=\frac{5\times\frac{4}{5}-3}{5\times\frac{4}{5}+3}=\frac{1}{7}.$$

56. (3) Originally, let the number of boys and girls in the college be 7x and 8x respectively. Their increased numbers are (120% of 7x) and (110% of 8x).

i.e.
$$\left(\frac{120}{100} \times 7x\right)$$
 and $\left(\frac{110}{100} \times 8x\right)$ i.e. $\frac{42x}{5}$ and $\frac{44x}{5}$.

∴ Required ratio =
$$\frac{42 \text{ x}}{5}$$
 : $\frac{44 \text{ x}}{5}$ = 21 : 22.

57. (1) Let the third proportional to $(x^2 - y^2)$ and (x - y) be z. Then $(x^2 - y^2)$: (x - y):: (x - y): z $\Rightarrow (x^2 - y^2) \times z = (x - y)^2$

$$\Rightarrow z = \frac{(x-y)^2}{(x^2 - y^2)} = \frac{(x-y)}{(x+y)}.$$

58. (2) Let the sum invested at 9% be $\stackrel{?}{\sim}$ x and that invested at 11% be $\stackrel{?}{\sim}$ (100000 – x)

Then,
$$\left(\frac{x \times 9 \times 1}{100}\right) + \left[\frac{(10000 - x) \times 11 \times 1}{100}\right]$$

$$= \left(100000 \times \frac{39}{4} \times \frac{1}{100}\right)$$

$$\Rightarrow \frac{9x + 1100000 - 11x}{100} = \frac{39000}{4} = 9750$$

$$\Rightarrow 2x = (1100000 - 975000) = 125000$$

$$\Rightarrow x = 62500$$
∴ Sum invested at 9% = ₹ 62,500

∴ Sum invested at 9% = ₹62,500Sum invested at 11% = ₹(100000 - 62500) = ₹37,500

- 59. (2) $\sin 38^{\circ} \csc 142^{\circ} + \cos 35^{\circ} \cdot \sec 145^{\circ}$ $= \sin 38^{\circ} \cdot \csc (180^{\circ} - 38^{\circ})$ $+ \cos 35^{\circ} \cdot \sec (180^{\circ} - 35^{\circ})$ $= \sin 38^{\circ} \cdot \csc 38^{\circ} + \cos 35^{\circ} \cdot (-\sec 35^{\circ})$ $= \sin 38^{\circ} \times \frac{1}{\sin 38^{\circ}} + \cos 35^{\circ} \times \frac{1}{\cos 35^{\circ}}$ = 1 - 1 = 0
- 60. (2) Total profit required = ₹ (42×18) = ₹ 756Profit on 22 sarees = ₹ (460 + 144) = ₹ 604Profit on 20 sarees = ₹ (756 - 604) = ₹ 152Average profit on these sarees

$$= \mathbf{7.60}$$

 $61. \quad (3) \quad \frac{\frac{13}{4} - \frac{5}{6} \times \frac{4}{5}}{\frac{13}{3} \div \frac{1}{5} - \left(\frac{3}{10} + \frac{106}{5}\right)} - \left(\frac{3}{2} \times \frac{5}{3}\right)$

$$=\frac{\frac{13}{4} - \frac{2}{3}}{\frac{13 \times 5}{3} - \left(\frac{3 + 212}{10}\right)} - \frac{5}{2} = \frac{\frac{39 - 8}{12}}{\frac{65}{3} - \frac{215}{10}} - \frac{5}{2}$$

$$=\frac{\frac{31}{12}}{\frac{650-645}{30}} - \frac{5}{2} = \frac{31}{12} \times \frac{30}{5} - \frac{5}{2}$$

$$=\frac{31}{2}-\frac{5}{2}=\frac{31-5}{2}=\frac{26}{2}=13.$$

62. (3) Volume of the new cube = Sum of volumes of all five cubes

$$\therefore a^{3} = a_{1}^{3} + a_{2}^{3} + a_{3}^{3} + a_{4}^{3} + a_{5}^{3}$$
or, $a = \sqrt[3]{a_{1}^{3} + a_{2}^{3} + a_{3}^{3} + a_{4}^{3} + a_{5}^{3}}$

$$= \sqrt[3]{9^{3} + 6^{3} + 3^{3} + 3^{3} + 1^{3}} \text{ cm}$$

$$= \sqrt[3]{729 + 216 + 27 + 27 + 1} \text{ cm} = \sqrt[3]{1000} \text{ cm} = 10 \text{ cm}$$

63. (3) 1 child's 1 day's work = $\frac{1}{12 \times 16} = \frac{1}{192}$;

1 adult's 1 days' work = $\frac{1}{8 \times 12} = \frac{1}{96}$

Work done in 3 days = $\left(\frac{1}{96} \times 16 \times 3\right) = \frac{1}{2}$

Remaining work = $\left(1 - \frac{1}{2}\right) = \frac{1}{2}$

6 adults + 4 children's 1 days' work

$$= \left(\frac{6}{96} + \frac{4}{192}\right) = \frac{1}{12}$$

 $\frac{1}{12}$ work is done by them in 1 day

 $\frac{1}{2}$ work is done by them $\left(12 \times \frac{1}{2}\right) = 6$ days.

64. (3)

Here $AC^2 = 2AB^2$

As $\triangle ABE$ and $\triangle ABC$ are equiangular

so ΔABE ~ ΔABC

[The ratio of the areas of two similar triangles is equal to the ratio of the square of their corresponding sides]

$$\frac{\text{area of } (\Delta ABE)}{\text{area of } (\Delta ACF)} = \frac{AB^2}{AC^2} = \frac{AB^2}{2AB^2} = \frac{1}{2}$$

65. (3) Number of males = 60% of 1000 = 600 Number of females = (1000 – 600) = 400 Number of literates = 25% of 1000 = 250 Number of literate males = 20% of 600 = 120 Number of literate females = (250 - 120) = 130

$$\therefore \text{ Required percentage } = \left(\frac{130}{400} \times 100\right)\% = 32.5\%.$$

(3) Let the base of triangle be decreased by x%. According to the question,

$$10 - x - \frac{10x}{100} = 0$$
 [Area remains same]

$$\Rightarrow x + \frac{x}{10} = 10 \Rightarrow \frac{10x + x}{10} = 10$$

$$\Rightarrow \frac{11x}{10} = 10 \Rightarrow x = \frac{100}{11} = 9\frac{1}{11}\%.$$

(1) Let cost price = ₹ 100

Then,
$$\frac{2}{5}$$
 of (Marked Price) = 75

⇒ Marked Price =
$$₹\left(\frac{75 \times 5}{2}\right) = ₹\left(\frac{375}{2}\right)$$

:. Required ratio =
$$\frac{375}{2}$$
: 100 = 375 : 200 = 15 : 8

(3) By the rule of alligation, we have:

Ratio of 1st and 2nd parts = 4:6=2:3

$$\therefore \text{ Quantity of 2nd kind } = \left(\frac{3}{5} \times 1000\right) \text{ kg} = 600 \text{ kg}.$$

(1) Let the ratio be x : (x + 40)

Then,
$$\frac{x}{(x+40)} = \frac{2}{7}$$

 $\Rightarrow 7x = 2x + 80$
 $\Rightarrow x = 16$

:. Required ratio = 16:56

(2) AB || EF || CD. So ABEF is a rectangle

$$\therefore \triangle AGB = \frac{1}{2} \text{ (area of rectangle ABEF)}$$

$$=\frac{1}{2}\times\left(\frac{1}{2} \text{ area of rectangle ABCD}\right)$$

$$=\frac{1}{4}$$
 (area of rectangle ABCD)

or, If a triangle and a parallelogram are on the same base and between the same parallels then the area of the triangle is equal to half the area of the parallelogram.

71. (3) Required percentage =
$$x + y + \frac{xy}{100}$$

Here
$$x = 50\%$$
 (increase),
y = 50% (decrease) i.e., -50%

$$\Rightarrow \text{Percentage} = 50 - 50 - \frac{50 \times 50}{100} = -25\%$$

Hence there is 25% decrease in area.

72. (2)
$$\frac{(0.75)^3}{1 - 0.75} + [(0.75)^2 + 0.75 \times 1 + 1]$$

$$= \frac{(0.75)^3 + (1 - 0.75)[(0.75)^2 + 0.75 \times 1 + 1^2]}{1 - 0.75}$$

$$= \frac{(0.75)^3 + 1^3 - (0.75)^3}{0.25}$$
[:: (a - b) (a² + ab + b²) = a³ - b³]

$$[\cdots (a-b)(a^2+ab+b^2)=a^3-b^3]$$

$$=\frac{1}{0.25}=\frac{100}{25}=4$$

$$\therefore \text{ Square root} = \sqrt{4} = 2.$$

73. (3) Remaining distance = 3 km

and Remaining time = $\left(\frac{1}{3} \times 45\right)$ min

$$=15 \text{ min} = \frac{1}{4} \text{ hr.}$$

 \therefore Required speed = (3×4) km/hr = 12 km/hr

74. (2) 50% of
$$(x - y) = 30\%$$
 of $(x + y)$

$$\Rightarrow \frac{50}{100}(x-y) = \frac{30}{100}(x+y)$$

$$\Rightarrow$$
 5 (x - y) = 3 (x + y) \Rightarrow 2x = 8y \Rightarrow x = 4y

:. Required percentage

$$=\left(\frac{y}{x}\times100\right)\% = \left(\frac{y}{4v}\times100\right)\% = 25\%.$$

75. (2) $\sin \theta$ and $\cos \theta$ are the roots of $ax^2 - bx + c = 0$

$$\therefore \sin \theta + \cos \theta = +\frac{b}{a} \qquad \dots (1)$$

and
$$\sin \theta \cdot \cos \theta = +\frac{c}{a}$$

Squaring the equation (1)

We get
$$(\sin \theta + \cos \theta)^2 = \left(\frac{b}{a}\right)^2$$

$$\therefore \sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta = \frac{b^2}{a^2}$$

$$\therefore 1 + 2 \times \left(\frac{c}{a}\right) = \frac{b^2}{a^2} \Rightarrow \frac{b^2}{a^2} - \frac{2c}{a} = 1$$

$$\therefore \frac{b^2 - 2ac}{a^2} = 1 \Rightarrow b^2 - 2ac = a^2$$
$$\Rightarrow a^2 - b^2 + 2ac = 0$$

76. (1) No error

77. (3) 'Responsible' will take 'for' after it, if it is followed by a noun

86. (3) 'against' also means 'in contact with'.

87. (2) 'Enjoy' is followed by 'gerund'.

88. (3) Universal truth is mentioned in simple present tense.

89. (2) 'Do what I say' is a correct and meaningful sentence.

90. (2) The sentence is a reality of present time hence present indefinite tense is the appropriate tense to be used here.

